

Classic crush is enough!

Dr Angela Hoye MB ChB, PhD, MRCP, FSCAI
Senior Lecturer in Cardiology
Hull & East Yorkshire Hospitals
United Kingdom

I have no conflicts of interest related to this presentation

Classic crush is enough!

- It is challenging to treat bifurcation lesions that involve a sizeable side branch that subtends an important volume of myocardium
- Severe disease (ie long length of disease) of such an important side branch is (probably) best treated with a 2-stent strategy
- Crush stenting:
 - Straightforward to learn
 - "Quick and simple"
 - Ensures complete lesion coverage with scaffolding of the side branch ostium

Crush is easy!

- ≥7F guide
- Wire both vessels
- Pre-dilate as necessary
- Position both stents
- Inflate SB stent, then remove the balloon ± wire
- Inflate the MV stent thereby "crushing" the SB stent

Crush stenting: angiographic FU

Mai	n vessel	Kissing balloon dilatation	No kissing balloon dilatation	p value
Follo	w-up angiography, n (%)	94 (77%)	92 (77%)	1.0
Refer	ence diameter (mm)	2.78 ± 0.61	2.64 ± 0.57	0.1
Pre	MLD (mm)	0.97 ± 0.53	0.89 ± 0.52	0.3
	DS (%)	66 ± 17	66 ± 18	0.7
	Lesion length (mm)	14.84 ± 10.40	15.97 ± 10.55	0.5
Post	MLD (mm)	2.89 ± 0.54	2.55 ± 0.53	<0.0001
	DS (%)	12 ± 9	14 ± 9	0.2
FU	MLD (mm)	2.64 ± 0.81	2.21 ± 0.75	<0.001
	DS (%)	20 ± 20	26 ± 19	0.04
Late loss (mm)		0.26 ± 0.65	0.35 ± 0.64	0.3
Binary restenosis rate (%)		6 (6%)	11 (12%)	0.2

Hoye et al J Am Coll Cardiol, 2006 May 16;47(10):1949-58

Crush stenting: angiographic FU

Side branch		Kissing balloon dilatation	No kissing balloon dilatation	p value
Follow-up angiography n (%)		94 (77%)	92 (77%)	1.0
Refer	ence diameter (mm)	2.45 ± 0.53	2.32 ± 0.49	0.1
Pre	MLD (mm)	0.90 ± 0.53	0.88 ± 0.52	0.8
	DS (%)	63 ± 21	62 ± 20	0.8
	Lesion length (mm)	9.01 ± 6.06	8.97 ± 6.03	1.0
Post	MLD (mm)	2.43 ± 0.53	2.10 ± 0.44	<0.00001
	DS (%)	13 ± 9	18 ± 10	<0.0001
FU	MLD (mm)	2.18 ± 0.71	1.52 ± 0.86	<0.0000001
	DS (%)	21 ± 18	41 ± 32	<0.000001
Late loss (mm)		0.24 ± 0.50	0.58 ± 0.77	<0.001
Binary restenosis rate (%)		9 (10%)	38 (41%)	<0.000001

Hoye et al J Am Coll Cardiol, 2006 May 16;47(10):1949-58

Crush is easy!

- ≥7F guide
- Wire both vessels
- Pre-dilate as necessary
- Position both stents
- Inflate SB stent, then remove the balloon ± wire
- Inflate the MV stent thereby "crushing" the SB stent
- Final kissing balloon inflation

Bench testing: the importance of balloon size

A: the balloon in the MV is smaller than the stent diameter, and causes distortion of the MV stent (B, arrow). C: endoscopic view of the main branch showing the distortion (arrows)

D: kissing balloon inflation with an appropriately sized MV balloon, corrects the distortion. F: endoscopic view of undistorted MV stent

Ormiston et al CCI 2004: 63

Tips and tricks to facilitate optimal FKBD:

- After the MV stent has been deployed, perform high pressure post-dilatation of the proximal part of the MV stent to "enlarge" the cells as much as possible to facilitate re-wiring of the SB
- Use non-compliant balloons and <u>sequential</u> high pressure balloon inflation (SB then MV) before a low pressure FKBD
- ?Avoid using stents with a closed cell design

Classic crush is enough!

COURAGE

I know it can't possibly work but I WANNA DO IT ANYWAY

Classical crush compared with DK crush: DK-crush I study

	Crush N=156	DK crush N=155	Р
FKBD (%)	76	100	
Results at 8 months			
Death (%)	1.7	0.6	0.5
Q-wave MI (%)	3.5	1.2	0.7
Non-Q MI (%)	11.1	9.1	0.9
Stent thrombosis (%)	3.2 (5.1% without FKBD)	1.3	1.0
TLR (%)	18.9	9.0	0.03
MACE (%)	24.4	11.4	0.02

Chen et al Eur J Clin Invest 2008;38(6):361-71

Classical crush compared with DK crush: DK-crush I study

8 month FU	Crush (overall) N=135	Crush no kiss N=30	Crush + kiss N=105	DK crush N=130	P
MV restenosis (%)	3.7	10.0	1.8	2.3	0.5
SB restenosis (%)	24.4	36.6	20.9	12.3	0.01

	Crush	DK crush	Р
Results at 24 months			
TLR (%)	23.4	11.4	0.02
MACE (%)	29.9	18.1	0.04

 The clinical results favour DK-Crush, driven by less restenosis and TLR

Chen et al J Interven Cardiol 2009;22:121–127

Classical crush compared with DK crush

• But.....

	Crush (overall)	Crush no kiss	Crush + kiss	DK crush	р
No. Balloons	2.2 ± 0.8	2.1 ± 0.7	2.2 ± 0.9	2.5 ± 0.7	<0.01
Contrast volume (mls)	108 ± 72	88 ± 60	117 ± 75	130 ± 79	0.04
Procedure time (mins)	35 ± 18	35 ± 18	34 ± 19	47 ± 24	<0.001

DK-crush I study

- Lack of FKBD was an independent predictor of TLR and stent thrombosis
- Unsatisfactory FKBD was evident in 27.6% crush (compared with 6.3% DK-crush)

Can we take measures to ensure delivery of optimal FKBD during classical crush stenting?

DK-crush I study

- Independent predictors of FKBD
 - Lesion location
 - MV stent length
 - Post-PCI SB MLD
 - Bifurcation angle

	Crush no kiss	Crush + FKBD
Bifurcation angle (°)	46 ± 14	56 ± 25
SB stent diameter (mm)	2.59 ± 0.33	2.84 ± 0.39

Avoid classical crush in very narrow angled lesions and lesions with a relatively small diameter SB

- The <u>site</u> of SB re-wiring is of paramount importance
- 213 patients treated with Crush and FKBD

 Defined "kissing unsatisfied" as a ≥20% diameter stenosis in the balloon

	Upper group	Middle group	Lower group	P value
No. Lesions	148	26	52	
Bifurcation angle (°)	56 ± 25	48 ± 22	47 ± 17	0.03
FKBI (%)	100	100	70	<0.001
Kissing unsatisfied by IVUS (%)	5.4	3.9	33.3	<0.001

- Independent predictors of SB restenosis
 - Kissing unsatisfied (HR 1.65 95% CI 1.33–2.09, p<0.001)
 - Re-wiring position (HR 2.34 95% CI 1.78–4.33, p <0.001)</p>
- Independent predictors of kissing unsatisfied
 - SB stent expansion (OR 3.12 95% CI 2.88-5.06, p=0.01)
 - Re-wiring position (OR 0.46 95% CI 0.34–0.87, p=0.001)

- 1. Avoid "low" re-wiring near the carina
 - 2. Ensure optimal SB stent expansion

The influence of the angle

Lesions with a narrow angle

 Extremely difficult to wire in any position other than near the carina

Avoid Classical crush for lesions with a shallow angle

The influence of the angle

The influence of the angle

There may be less scaffolding of the SB ostium when using this technique in high angled lesions
- This will apply to DK-Crush as well

The influence of the angle: high angle lesions

Guidewire bias

GW position did not change during inflation.

The influence of the angle: high angle lesions

Uniform balloon dilatation at maximal inflation

Avoid Classical crush for lesions with a high angle

Balloon dilatation is not uniform Proximal and distal: overdilatation Middle segment: restricted

This cannot be corrected with increased inflation pressure

Conclusions

- "Classical" crush is easy to learn and quick to perform
- The results of "Classical" crush are highly dependent on achievement of good quality FKBD
- FKBD can be (reliably) performed with appropriate lesion selection and a few "tips and tricks"
 - Post-dilatation of the proximal
 MV stent to facilitate wire recrossing into the SB

Always kiss....

Conclusions

 High pressure sequential balloon dilatation followed by FKBD using appropriately sized balloons

Use high pressure

Conclusions

- Avoid re-crossing near to the bifurcation carina
- Avoid using Classic crush in shallow angled bifurcations: increased chance of failed FKBD
- Avoid using Classic crush in high angled lesions: unable to fully expand the stent at the SB ostium
- Reserve Classical crush for large diameter SB (preferably >2.75mm)
- DK crush involves the use of more balloons (expensive), and a longer procedure time with a higher radiation dose and increased contrast volume

It is not the technique that is at fault, it is understanding when/how it should be applied

Thankyou!!!